

A member of the NUHS

Diagnostic Approach to Developmental Delay

Dr Kang Ying Qi Consultant Developmental Pediatrician 20 May 2017

What is development?

Young Baby Adulthood

- Wide variation between children
- Variation between domains in same child

Rule: Variable and Progressive

Developmental delay An information guide for parents Royal Children Hospital Melbourne

What is Developmental Delay?

What is **Developmental Delay**?

Developmental Quotient (DQ)

Developmental age Chronological age

DQ < 70 indicates developmental delay

Red flags in evaluation of children with Neuromotor delay

FABLE 3 "Red Flags" in the Evaluation of a Child With Neuromotor Delay			
Red Flags: Indications for Prompt Referral	Implications		
Elevated CK to greater than 3 $ imes$ normal values (boys and girls)	Muscle destruction, such as in DMD, Becker muscular dystrophy, other disorders of muscles		
Fasciculations (most often but not exclusively seen in the tongue)	Lower motor neuron disorders (spinal muscular atrophy; risk of rapid deterioration in acute illness)		
Facial dysmorphism, organomegaly, signs of heart failure, and early joint contractures	Glycogen storage diseases (mucopolysaccharidosis, Pompe disease may improve with early enzyme therapy)		
Abnormalities on brain MRI	Neurosurgical consultation if hydrocephalus or another surgical condition is suspected		
Respiratory insufficiency with generalized weakness	Neuromuscular disorders with high risk of respiratory failure during acute illness (consider inpatient evaluation)		
Loss of motor milestones	Suggestive of neurodegenerative process		
Motor delays present during minor acute illness	Mitochondrial myopathies often present during metabolic stress		

Referral Guidelines : Speech Delay

TABLE 8 Guidelines for Children with Abnormal Speech Development

Age, mo	Referral Guidelines for Children With "Speech" Delay	
12	No differentiated babbling or vocal imitation	
18	No use of single words	
24	Single-word vocabulary of \leq 10 words	
30	Fewer than 100 words; no evidence of 2-word combinations; unintelligible	
36	Fewer than 200 words; no use of telegraphic sentences; clarity ${<}50\%$	
48	Fewer than 600 words; no use of single sentences; clarity \leq 80%	

Source: Matkin ND. Pediatr Rev. 1984;6:151.

Guidelines on Identification of Children

with ASD

Prespeech Deficits Common in Children with Autism Spectrum Disorders

Decreased or absent use of prespeech gestures (e.g., waving, pointing)

Delayed onset of babbling past nine months of age

Disregard for vocalizations (i.e., lack of response to own name), yet awareness of environmental sounds

Lack of appropriate gaze

Lack of expressions such as "oh-oh" or "huh"

Lack of interest or response to neutral statements

Lack of recognition of mother's (or father's or consistent caregiver's) voice

Lack of the alternating pattern of vocalizations between infant and parent that usually occurs at approximately six months of age

Lack of warm, joyful expressions with gaze

Identification and Evaluation of Children With Autism Spectrum Disorders Paediatrics November 2007

Developmental Trajectory

Developmental Trajectory

1. Environmental causes of DD are real

#1

Even infants and young children are affected adversely when significant stresses threaten their family and caregiving environments.

Nurturing & Stable & Engaging relationships

Center on the Developing Child 🖁 HARVARD UNIVERSITY

While attachments to their parents are primary, young children can also benefit significantly from relationships with other responsive caregivers both within and outside the family.

Unplug

DDx of hypotonia in infancy

Approach to Investigations

- General Investigations: TSH, free T4, electrolytes
 (& Ca)
- CNS Dysfunction : CT/MRI head, consider EEG, consult neurology and consider karyotype
- *Metabolic Disease* : urine and serum amino acids, urine organic acids, ammonia, liver function tests
- Lower motor neuron disease : creatine kinase, referral to neurology for specialised test

2. Motor Delay warrants closer attention

Fe def anemia affects development

Summary: Implications for Research and Programs Rebecca J. Stoltzfus Center for Human Nutrition, Department of International Health, School of Hygiene and Public Health, The Johns Hopkins University, Baltim

Iron deficiency and impaired child development The relation may be causal, but it may not be a priority for intervention. Haroon Saloojee, senior lecturer and John M Pettifor, professor

Low vitamin D status & development

Vitamin D and Autism Spectrum Disorder: A Literature Review Hajar Mazahery, Carlos A. Camargo, Jr. and Pamela R. von Hurst The effects of vitamin D on brain development and adult brain function <u>Molecular and Cellular Endocrinology</u> December 2011

Alstrom Syndrome

Feature	Age of Onset Range (Mean)	Incidence
Cone-rod dystrophy	Birth - 15 mos (5 mos)	100%
Obesity	Birth - 5 years (2.5 yrs)	98%
Progressive sensorineural hearing loss	2-25 yrs (9 yrs)	88%
Dilated cardiomyopathy	2 wks - 4 mos	42%
Restrictive cardiomyopathy	Juvenile - late 30s	18%
Insulin resistance / type 2 diabetes mellitus	4-30 yrs / 8-40 yrs (16 yrs)	92% / 68%
Developmental delay	Birth-adolescence	25%-30%
Short stature	Puberty - adult	98%
Hypogonadotropic hypogonadism	10+ yrs	78% of males
Urologic disease	Adolescence - adult	48%
Renal disease	Adolescence - adult	Variably progressive with age in all individuals
Hepatic disease	8-30 yrs	23%-92%

3. Hearing screen is important

(despite newborn hearing screen)

Hearing lost is difficult to diagnose clinically. Use risk stratification instead.

AAP Clinical Report—Hearing Assessment in Infants and Children: Recommendations Beyond Neonatal Screening Pediatrics 2009

Risk Indicators Associated With Permanent Congenital, Delayed-Onset, and/or Progressive Hearing Loss in Childhood

- Caregiver concerns regarding hearing,
- speech, language delay
- developmental delay
- Warrants objective hearing assessment

A member of the NUHS

Thank You. <u>ying qi_kang@nuhs.edu.sg</u> Questions?